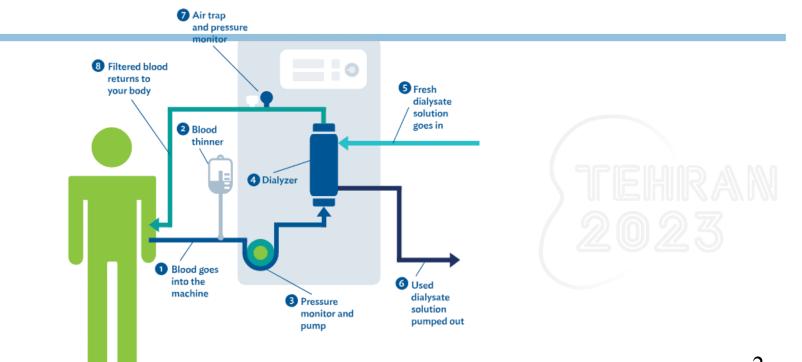

Hemodialysis vs. Hemodiafiltration in Pediatric Patients

The 19th International Congress of Nephrology, Dialysis and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran Alaleh Gheissari. MD Professor of Pediatrics Pediatric Nephrologist IUMS



Part I

Conventional Hemodialysis

The 19th International Congress of Nephrology, Dialysis and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran

Mechanisms of Solute Removal

✓ I - Diffusion:

- ✓ Solute removal according to concentration difference between plasma water and the dialysate.
 - It is greatest for small molecules removal •
 - Increase with increasing the small solute concentration.
 - Depends on **membrane factors**: Sieving coefficient, porosity of the membrane, diffusivity & thickness of the membrane •
 - Decreases with increasing molecular size of a solute.

Mechanisms of Solute Removal

✓ **II** - Convection: :

✓ Solute clearance occurs as a result of water flow through the membrane in response to hydrostatic pressure difference between the two sides of the membrane (solvent drag)•

- The driving force is a pressure gradient rather than a concentration gradient •
- The major impact comes from the solute size relative to the membrane pores size (radius).

Determinants of Convective Transport Across Membranes

- i. Water flux across the membrane
- ii. Pore size
- iii. Pore size distribution of the membrane
- iv. Molecular size (molecular mass)
- v. Hydrostatic pressure difference
- vi. Viscosity of the fluid in the membrane pores
- vii. Molecular shape and configuration
- viii.Charges(solutes and membranes)

Important Dialyzer character relevant to its Convective Function

- ✓ Ultrafiltration co-efficient or KUF (mL/h/mm Hg):
- ✓ An intrinsic characteristic of dialysers, reported by the manufacturer as a single value, which drives and limits fluid removal.
- \checkmark High-flux dialysers have been introduced with the appearance of

convective techniques, aiming to increase fluid and solute removal.

- \checkmark It characterizes the membrane's permeability to water.
 - The higher KUF is the greater the permeability to water

The 19th **International Congress of Nephrology, Dialysis and Transplantation** (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

Mechanisms of Solute Removal

✓ III - Adsorption:

- Plasma proteins being adsorbed to the surface of the membrane.
 (So, effect is limited to LMW Proteins clearance)
 - Difficult estimation.
 - High flux membranes has more protein adsorption than Low Flux membranes (Larger pores).

Hemodialysis & Its Principle

✓ Extracorporeal removal of waste products

• Such as urea and creatinine and excess water

✓ Principle:

- Diffusion of solutes across a semipermeable membrane
- Utilizes counter current flow:
 - Counter-current flow maintains the concentration gradient across the membrane at a maximum.
 - Fluid removal (ultrafiltration) is achieved by altering the hydrostatic pressure of the dialysate compartment.
 - Conventional HD prescription provides only about 10% of the clearance power of the natural kidneys

Incapabilities of Conventional HD

✓ Removing *middle and large size molecules* (>500 Dalton).

- Such as β -microglobulin (β -M), which is strongly associated with carpal tunnel syndrome and dialysis-related amyloidosis (G, spine and cardiac problem).
- ✓ Removing *protein-bound toxic molecules*.
- ✓ Removing *pro-inflammatory cytokines.*
- ✓ Removing *severe vasoactive molecules* such as p-cresol and uridine adenosine tetraphosphate.
 - Skipping at least one dialysis session is associated with a 25%-30% increase in the risk of death.

Examples of types and sizes of different uremic toxic molecules

Protein-Bound Molecules	Middle Molecules	Small Water Soluble Molecules		
(MW >500 Daltons)	(MW >500 Daltons	(MW <500 Daltons)		
Hippuric acid	Adrenomedullin	Sodium		
(insulin resistance and glucose intolerance)	(potent hypotensive peptide)			
Homocystein	AGE	Phosphorus		
(atherogenecity and thrombogenecity				
Indoxyl sulfate	AOP	potassium		
pro-inflammatory effect & endothelial				
dysfunction				
p-cresyl sulfate/ p-cresol	Vitamin B12	urea		
Endothelial and pro-inflammatory				
Polyamines	Endothelin	Creatinine		
inhibit erythroid colony growth in a dose	strong vasoconstrictor			
dependent way				
h-defores				

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

Examples of types and sizes of different uremic toxic molecules

Protein-Bound Molecules	Middle Molecules	Middle Molecules		
(MW >500 Daltons)	(MW >500 Daltons			
Uric acid	PTH			
Glucose	Beta 2- M			
	Leptin			
	Cytokines			
	Immunoglobulin LC) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		

It has been reported that only 32% to 33% of patients on conventional HD survive to the fifth

year of treatment.

The mortality rate in conventional HD ranges between 14-26% in Europe and 24% in USA.

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

Dialyzer Membranes (PROS & CONS)

✓ Made primarily of cellulose:

- Derived from cotton linter
- The surface of such membranes was not very biocompatible
 - Because exposed hydroxyl groups would activate complement in the blood passing by the membrane.

✓ More recently, made from synthetic materials:

- These synthetic membranes activate complement to a lesser degree than unsubstituted cellulose membranes.
 - Using polymers such as polyarylethersulfone, polyamide, polyvinylpyrrolidone, polycarbonate, and polyacrylonitrile.
 - Made in either low- or high-flux
 - Nanotechnology (high-flux)

Advantages of Innovations in the Technology of Dialysis Membranes

- ✓ Improvement of:
 - Biocompatibility,
 - Anti-thrombotic effect,
 - Hydraulic properties,
 - Perm-selective properties.

High-Flux Vs Low-Flux Dialyzers

✓ High-Flux

- Ultrafiltration Coefficient
 (KUF): > 15 ml/h/mmHg
- β -M clearance > 20 ml/min

✓Low-flux

- Ultrafiltration Coefficient
 (KUF): <15 ml/h/mmHg
- β -M clearance < 10 ml/min

• Larger pore size semipermeable membranes in compact cartridges

High-Flux Vs Low-Flux Dialyzers (continue)

✓ High-Flux

- Enhanced ability to remove small solutes and middle molecules.
- Allow the passage and removal of retained solutes of higher molecular weight (than do low-flux membranes).
- Superior to peritoneal dialysis in clearing β –M.
- Superior to peritoneal dialysis in clearing the protein-bound middle molecule pcresol.

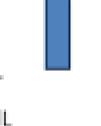
'Super high-flux' Membranes

$\checkmark A$ high cut-on pore size

- Efficient in removal of middle and large size uremic toxin molecules
- A new generation of hemodialysis membranes with M.W cut-points closer to that of the native kidney (65000 Dalton)
 - Efficient in removal of myoglobin in patients with rhabdomyolysis.
 - Efficient in direct removal of free light chains and other plasma components.
 - Greater clearance of inflammatory cytokines than conventional high-flux membranes.
 - A positive impact on restoration of immune cell function.
 - Attenuation of hemodynamic instability and decrease in plasma interleukin-6 levels in septic patients with AKI.
 - More Albumin Loss

Anticoagulants Used in the Blood Circuit

- ✓ Unfractionated heparin,
- ✓ Low molecular-weight heparin,
- ✓ Natural and synthetic heparinoids,
- ✓ Direct thrombin inhibitors,
- ✓ Prostanoids,
- ✓ Saline flushes
- ✓ Citrate infusion
- ✓ Citrate- based dialysate.
 - ✓ Long-term use of heparin side-effects:
 - thrombocytopenia, hypertriglyceridemia, osteoporosis, hypersensitivity, alopecia, metabolic disturbances, and hypotension.

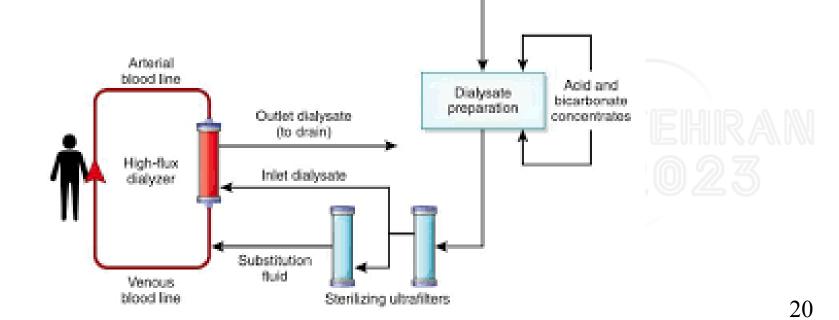


Blood

- Na = 140 mEq/L
- K = 4.5 mEq/L
- CI =100 mEq/L
- CO2 = 24 mEq/L
- BUN = 30 mg/dL
- Cr = 5 mg/dL
- Glucose = 100 mg/dL
- Calcium=1.2 mmole/L
- Phosphorus=4 mg/dL
- Magnesium=2 mg/dL
- Vit B12 = 500 pg/mL
- Albumin = 4 g/dL

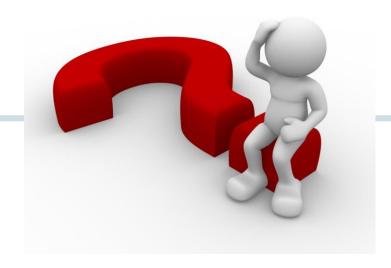
Dialysate

- Na= 140 mEq/L
- K= 2 mEq/L
- Cl= 100 mEq/L
- HCO3=35 mEq/L
- → Urea=0 mg/dL
- → · Cr=0 mg/dL
 - Dextrose= 200 mg/dL
 - Calcium=2.5 mEq/L
- → Phosphorus = 0 mg/dL
- → Magnesium=1.2 mg/dL
- Vit B12= 0
- Albumin =0


The 19th International Congress of Nephrology, Dialysis and Transplantation (ICNDT)

12-15 December 2023 Homa Hotel, Tehran

Part II


Hemodiafiltration

Henderson 1967

What was the problem with HD after improving membranes???

✓ Failure to improve outcome:

>Reconsider the implementation of the other physiologic principle of "convection"

- Larger size uremic toxins can be dragged and removed from blood by filtering large volume of fluid pushed under high hydrostatic pressure through a larger pore size membrane (high cut-on membrane/high-flux dialyzer).
- ≻This technique is known as "*hemofiltration*".

Fluid Balance in Hemodiafiltration

✓ Infusion of replacement solutions

- To replace the large volume of filtered fluids (*convection volume or substitution fluid*):
- **Pre-dilution:** fluid administration before the filter
- **Post-dilution**: fluid administration after the filter
 - Combination of the two physiologic principles of diffusion (hemodialysis) and convection (hemofiltration) in the management of patients with ESRD is known as "hemodiafiltration" (since 1974).

Fluid Balance in Hemodiafiltration

✓ Predilution on demand consists in:

- An automatic feedback of the machine,
- Diverting part of the filtered dialysate into a predilution mode:
 - with an infusion of 200 ml in 30 s
 - while the ultrafiltration pump stops.

Fluid Balance in Hemodiafiltration

✓ Backflush on demand consists in:

- An automatic feedback of the machine
- Triggered by the TMP control:
 - Producing a positive pressure in the dialysate compartment due to a stop of filtration
 - Rapid infusion of at least 100 ml of ultrapure dialysate into the hollow

fiber.

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

Online Hemodiafiltration(HDF)

✓ The main problem in applying HDF:

- Supplying a large quantities of replacement solutions.
- Needed autoclaved expensive plastic bags.

- Improvement in the performance of water treatment plants:
 - producing ultrapure water (almost nil bacterial growth and endotoxin free)

Microbiological Standards for Water and Dialysis Fluid Purity

	Standard Water	Standard Dialysate	Ultrapure Water	Ultrapure Dialysate	Sterile Dialysate
Bacterial limits , CFU/mL	< 100-200	< 100-200	< 0.1	< 0.1	< 10-6
Endotoxin limits , EU/mL	< 0.25-2	< 0.25	< 0.03	< 0.03	< 0.03

The 19th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023. Homa Hotel, Tehran

✓ The most physiologic clearance profile for:

- Small, medium-sized and large toxic molecules
- ✓ Performed three times per week/4 hour.
- ✓ Effective online HDF should ensure:
 - Higher blood and dialysate flow rates
- ✓Ultrafiltration not less than 20% depending on the mode of HDF.
- ✓ Substitution/replacement fluids 5-25 liters/session

✓ The data from randomized controlled studies (CONTRAST and Turkish studies):

• A convection volume higher than 15 liters in the post-dilution mode should be

targeted in order to achieve successful HDF.

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

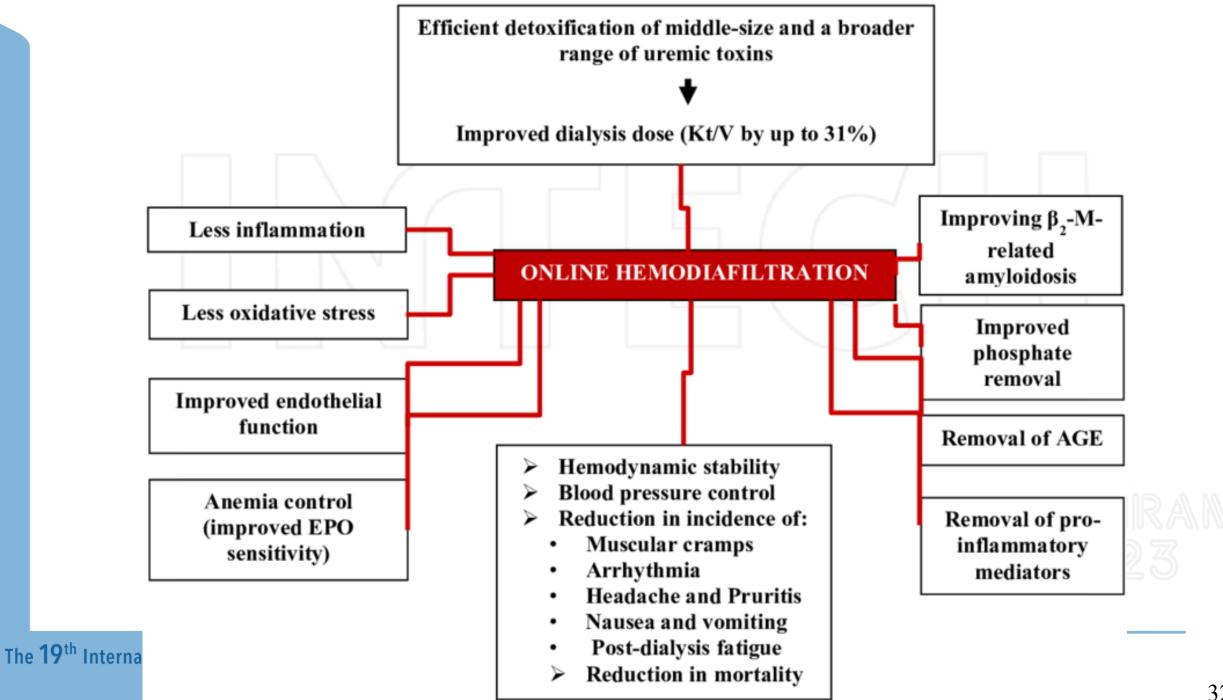
✓ HDF (*in particular online HDF*):

- The implementation of both physiologic principles of diffusion and convection:
 - Achieving better adequacy of dialysis
 - Achieving better clearance of small and middle-size uremic toxins
 - Achieving higher values of Kt/V (averages of 1.37 and 1.44 versus 1.35 and 1.33 in conventional HD).

✓ HDF (*in particular online HDF*):

- Achieving better levels of phosphate.
- Achieving higher removal of serum free light chain (MM).
- Achieving higher removal of larger solutes:
 - Myoglobin (16000 D), retinol-binding protein (25000 D) and the protein-bound pcresol
- Achieving higher removal of pro-inflammatory stimuli
 - oxidative stress molecules, advanced glycation end-products, homocysteine, and proinflammatory cytokines.

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran



Types of Hemodiafiltration

Hemodiafiltration Volume	Convection Volume, L	Convection Volume, L/1.73 m2	Source of Substitution Fluid
Low volume	2-12	2.5-14.5	Prepackaged bags, internal filtration/backfiltration
Medium volume	12-23	14.5-25.5	Online preparation
High volume	>23	>25.5	Online preparation

The convection volume is the total amount of fluid filtered during a hemodiafiltration treatment. It includes both the substitution fluid and the excess fluid removed to return the patient to his/her dry weight. Typically, the substitution fluid volume will be 2–4 L less than the convection volume

Haemodiafiltration

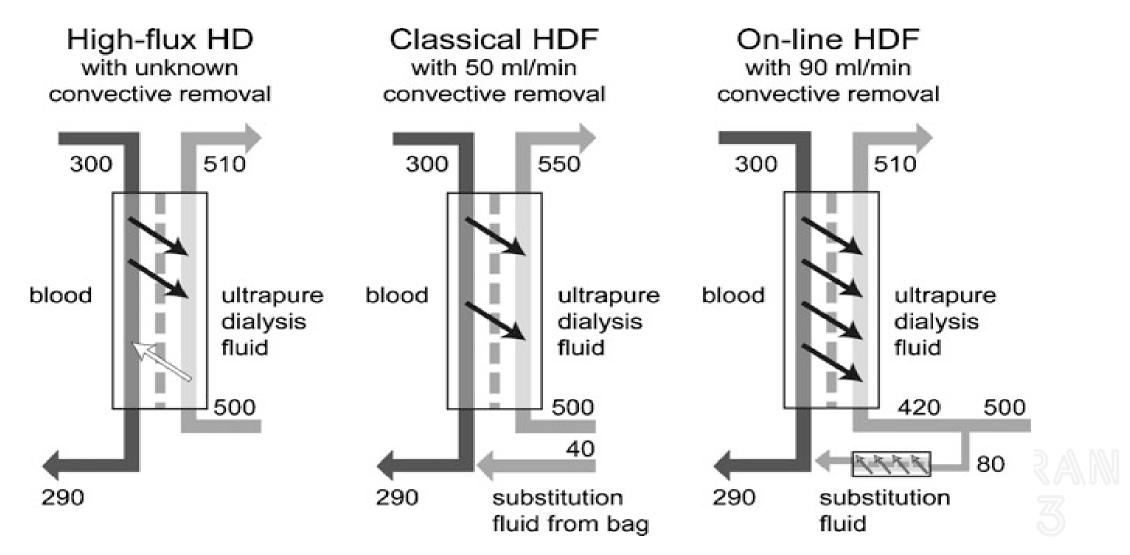
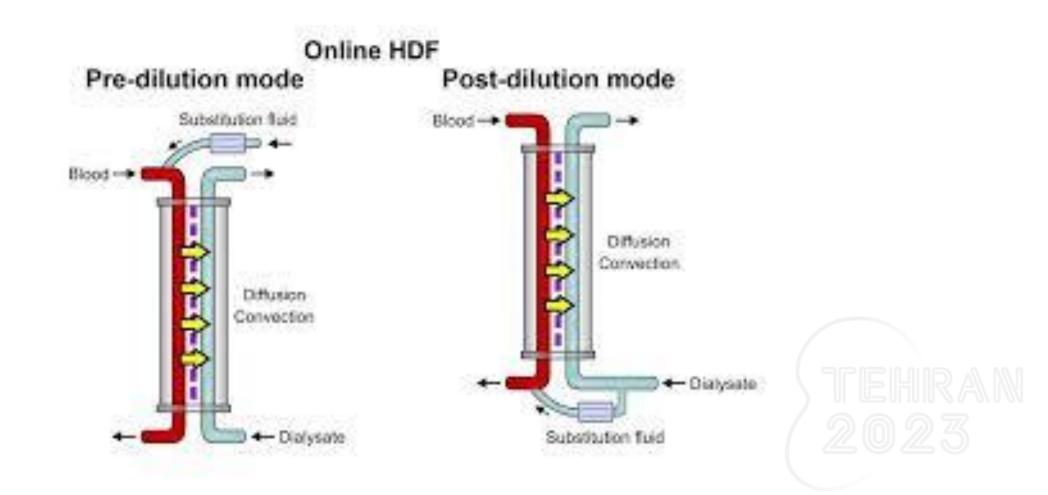
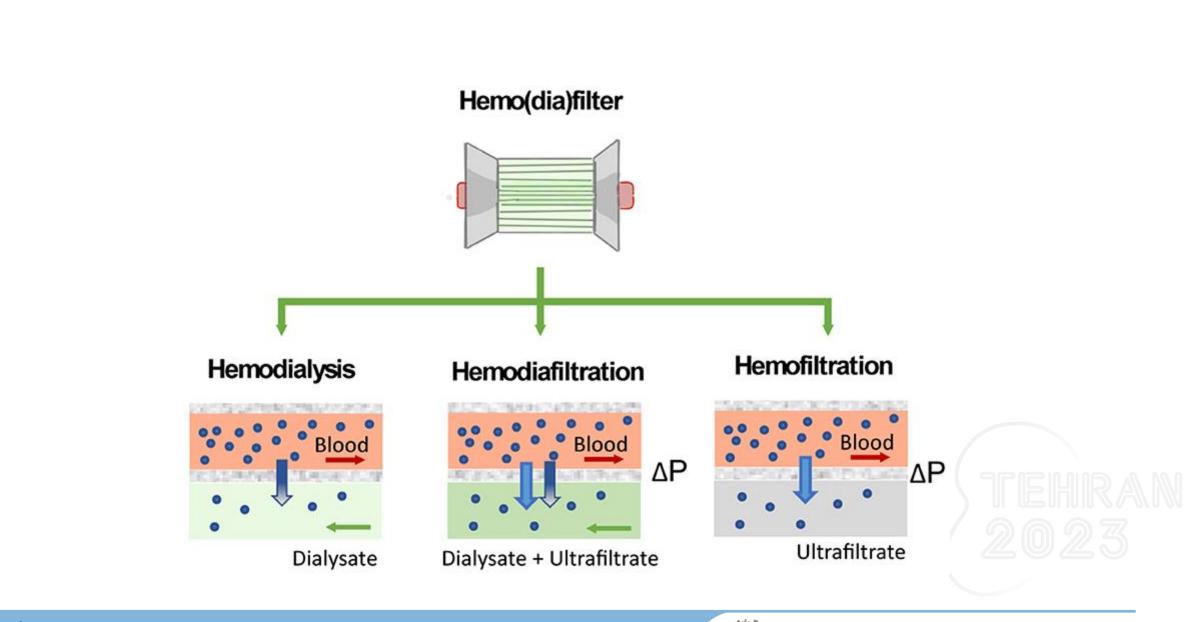
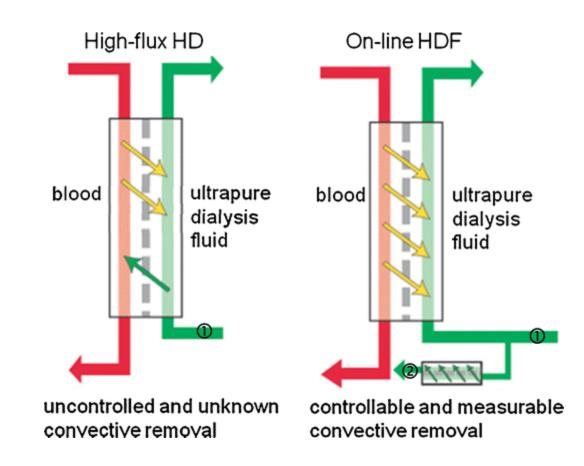



Fig ? Flow disgrame for different forme of basmodiafiltration (HDF).


The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran


The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

The **19**th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023 . Homa Hotel, Tehran

References

- I. Hemodiafiltration: Technical and Clinical Issues. Claudio Ronco. Blood Purif 2015.
- II. Hemodialysis. Ayman Karkar. Advances in Hemodialysis Techniques 2013
- III. Beta-2 Microglobulin Amyloidosis: Past, Present, and Future. Castello e al. KIDNEY360 1: 1447–1455, 2020.
- IV. Approach to new advances in dialysis. Middle East Medical Portal 2023
- V. Calcium balance in pediatric online hemodiafiltration. Bacchetta et al. Néphrologie & Thérapeutique 2015
- VI. Chronic intermittent high-volume hemodiafiltration. Grooteman et al. Up To Date 2023
- VII. Fischbach Michel. Dialysis practice: how to write an HDF prescription.
- VIII. Effects of Hemodiafiltration versus Conventional Hemodialysis in Children. Shroff et al. J Am Soc Nephrol 2019
- IX. Hemodiafiltration in Children. Fischbach et al. Hemodiafi ltration: Theory, Technology
- X. and Clinical Practice 2015

The 19th International Congress of Nephrology, Dialysis and Transplantation (ICNDT) 12-15 December 2023. Homa Hotel, Tehran

